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Abstract. New supersymmetric (SUSY) partners of the modified Pöschl–Teller and the Dirac’s
delta well potentials are constructed in closed form. The resulting one-parametric potentials are
shown to be interrelated by a limiting process. The range of values of the parameters for which
these potentials are free of singularities is exactly determined. The construction of higher-order
SUSY partner potentials is also investigated.

1. Introduction

The modified P̈oschl–Teller potentialV (α, x) = −U0(coshαx)−2, is one of the few exactly
solvable potentials in quantum mechanics. It was first analysed by Rosen and Morse [1],
who found its energy eigenvalues and eigenfunctions. (This potentialV (α, x) is, infact, a
hyperbolic version of what is commonly known as the Pöschl–Teller potential [2].) The system
is characterized by a finite number of bound states whose spectrum depends on the parameters
U0, α > 0, plus a continuum of scattering states (see [3] for an elegant group approach); the
normalization of the wavefunctions has been obtained by Nieto [4]. Barutet al [5] studied a
three-dimensional version of the problem (with an additional term proportional to(sinhαx)−2

in the potential, which was already present in [2]), and using the Infeld–Hull factorization [6]
they constructed ladder operators to determine the bound and scattering states from the matrix
elements of group representations. It is well known that the modified Pöschl–Teller potential
appears in the solitary wave solutions of the Korteweg–de Vries equation [7], and also that it
can be obtained from supersymmetric (SUSY) quantum mechanics [8] as the SUSY partner
of the free particle potential [9], being a nontrivial example of unbroken SUSY [10].

This potential can be considered as belonging to the type of short-range potentials, which
almost vanish over most of their domain, except near zero (where the source resides). The
extreme case of such short-range potentials is the Dirac delta wellV (x) = −gδ(x), g > 0.
Delta potentials have long been used in field theories, where the main problem arises from the
regularization and renormalization of the values for the physical observables predicted by the
theory itself [11]. The effects of adding a delta function potential to the states of a previously
known potential have been computed exactly by Atkinson and Crater [12] for several physical
systems. The one-dimensional problem ofN particles interacting by means of delta potentials
is one of the simplest many-body problems solved exactly (see [13] and references therein).
As the delta potentialδ(x) is a distribution rather than a function, it can be approximated by
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different families of functions; one of them (V (α, x) with an appropriate choice of the depth
U0) will be investigated in this paper.

Concerning the study of new exactly solvable problems in quantum mechanics, in recent
years there has been remarkable progress along different lines: Darboux transformation [14],
Infeld–Hull factorization [6], Mielnik factorization [15–17], SUSY quantum mechanics [8]
and inverse scattering theory [18], among others. It is worth stressing that all of them can
be embraced in an elegant algebraic approach namedintertwining technique[19], which has
been successfully applied in the construction of higher-order SUSY partners [20, 21]. The
usefulness of the intertwining has also been proved in the study and interpretation of black-
hole perturbations in general relativity [22].

The main purpose of this paper is to analyse the SUSY partners associated with the
modified P̈oschl–Teller and Dirac delta potentials by using the intertwining technique. In
section 2, after a short review of results concerning both potentials, the properties of the latter
are straightforwardly obtained as a limiting case of the former. In section 3 we will determine
closed expressions for two new families of SUSY partner potentials of Pöschl–Teller, paying
attention to the appearence of singularities (in that case the isospectral properties should be
considered under the point of view of [23]). Besides, the limit already mentioned in section 2
is carefully studied here for these two families, obtaining very different behaviour for each of
them. A direct analysis of the SUSY delta potential is also carried out to check the validity of
the previous limits. Finally, in section 4 other varieties of Pöschl–Teller SUSY potentials are
shown to be easily obtained using higher-order intertwining.

2. The essentials of the modified P̈oschl–Teller potential

Let us consider the well known one-dimensional two-parametric modified Pöschl–Teller
potential [24], written in the following equivalent forms:

V (α, x) = − U0

cosh2 αx
= − h̄

2

2m
α2λ(λ− 1)

cosh2 αx
= − gα

2 cosh2 αx
α > 0. (1)

Henceforth, in all three versions, the following conditions are imposed in order to have an
attractive potential:U0 > 0, λ > 1 or g > 0. We also take for simplicity ¯h2/2m = 1, and
from the last equality the parametersα, λ andg are related by

λ = 1

2

(
1 +

√
1 +

2g

α

)
> 1. (2)

The bound states(E < 0) for this potential can be obtained by using the traditional recipe
of transforming the stationary Schrödinger equation into a hypergeometric equation, with
parameters

a = 1

2

(
λ−
√|E|
α

)
b = 1

2

(
λ +

√|E|
α

)
c = 1

2
. (3)

The general solution is

ψ(x) = (coshαx)λ[A2F1(a, b; 1
2;− sinh2 αx)

+B(sinhαx) 2F1(a + 1
2, b + 1

2; 3
2;− sinh2 αx)]. (4)

The normalization condition on these eigenfunctions allows us to determine the energy
spectrum, which is found to be

En = −α2(λ− 1− n)2 n ∈ N, 06 n < λ− 1 (5)
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or, just in terms ofα andg:

En = −α2

(
1

2

√
1 +

2g

α
− 1

2
− n

)2

n = 0, 1, 2, . . . <
1

2

√
1 +

2g

α
− 1

2
. (6)

From (5) andλ > 1, the energy forn = 0 always belongs to the spectrum ofV (α, x). Calling
N the biggest possible value ofn in (6), the total number of bound states isN + 1. From there,
the following relationship between the parametersα andN holds:

2g

(2N + 3)2 − 1
6 α < 2g

(2N + 1)2 − 1
.

If N = 0, thenα > g/4, and there is just one bound state such that it has the lowest energy
E0, and for which we have

a0 = c0 = 1
2 b0 = λ− 1

2 A 6= 0 B = 0 E0 = −α2(λ− 1)2.

(7)

The corresponding normalized wavefunction turns out to be

ψ0(x) = C0(coshαx)λ 2F1

(
1

2
, λ− 1

2
; 1

2
;− sinh2 αx

)
=
√
α0(λ− 1

2)√
π0(λ− 1)

(coshαx)1−λ. (8)

It is also interesting to remark that (1) is atransparentpotential (i.e. the reflexion coefficient
is equal to zero) when the following condition is verified [24]:

g = 2αk(k + 1) k = 0, 1, 2, . . . . (9)

Using our notation this implies

λ = k + 1 k = 1, 2, . . . . (10)

Whenk = 0 we have the case of the free particle, which was excluded from the very beginning.
The last form of the potentialV (α, x) given in (1) can be directly related to the Dirac delta

potentialVD(x) = −gδ(x) simply by taking the limitα→∞:

lim
α→∞V (α, x) = −gδ(x). (11)

As is well known, this delta well has a unique bound state with eigenvalue

Eδ = −(g/2)2 (12)

and normalized wavefunction

ψδ(x) =
√
g/2e−g|x|/2. (13)

These results can be obtained directly from the modified Pöschl–Teller potential by proving
that the limiting relationship (11) between both types of potential is also inherited by their
eigenfunctions and energy eigenvalues. Indeed, from the Pöschl–Teller ground state energy
level (7) we have

lim
α→∞E0 = − lim

α→∞
α2

4

(
g

α
− g2

2α2
+ · · ·

)2

= −
(g

2

)2
= Eδ. (14)

A similar analysis can be done for the ground state eigenfunction (8). Observe thatψ0(0) = C0;
if x 6= 0, then the limitα →∞ is equivalent toαx → ±∞, hence it can be calculated from
the asymptotic form of the function. To find it, we use

coshαx ∼ eα|x|

2
sinhαx ∼ ±eα|x|

2
(α > 0) (15)
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and also the fact that, forz→−∞, we have [25]

2F1(a, b; c; z) ∼ 0(c)
{

0(b − a)
0(b)0(c − a)(−z)

−a +
0(a − b)

0(a)0(c − b)(−z)
−b
}

| arg(−z)| < π. (16)

Then, from (7) and (16), we have for|z| → ∞
2F1(

1
2, b0; 1

2;−z2) ∼ z−2b0. (17)

In addition, we have the following asymptotic behaviour forα→∞: 2b0 ∼ 1 +g/α. Hence

lim
α→∞ψ0(x) = C∞ lim

α→∞2b0− 1
2 e−|x|α(b0− 1

2 ) = C∞e−g|x|/2 (18)

whereC0 → C∞. From (8) it is clear thatC∞ =
√
g/2, and then equation (18) states the

connection between (8) and (13) when the limiting relationship (11) is satisfied.
Finally, it is also well known that the delta well potential is transparent. This property

is also deduced from the Pöschl–Teller potential by taking the limitα → ∞ in (10), and
using (2), which gives the solutionk = 0.

3. The SUSY modified P̈oschl–Teller potential

Let us consider now the problem of finding the SUSY partner of the modified Pöschl–Teller
potentialV (α, x). We look for a first-order differential operatorA = d

dx + β(x) and a partner
potentialṼ (α, x) such that the following intertwining relationship holds:[

− d2

dx2
+ Ṽ (α, x)

]
A = A

[
− d2

dx2
+ V (α, x)

]
. (19)

The new potential̃V (α, x) is related toV (α, x) through the following SUSY relationship:

Ṽ (α, x) = V (α, x) + 2β ′(x) (20)

whereβ(x) is a solution of the Riccati equation

β2(x)− β ′(x) = V (α, x)− ε (21)

with ε an integration constant, which turns out to be the factorization energy. There is
an immediate particular solution of equation (21) in the form of a hyperbolic tangent,
β0 = D tanhαx, withD depending onα. The introduction ofβ0 in (21) gives

D+ = −αλ D− = −α(1− λ). (22)

Therefore, we have two different particular solutions of (21):

β±0 (α, x) = D± tanhαx (23)

associated with two different factorization energies

ε± = −(D±)2 = −α
2

2

(
1 +

g

α
±
√

1 +
2g

α

)
. (24)

Note that these factorization energies can be formally identified with two values of the spectrum
formula (6):

ε− = E0 ε+ = E−1. (25)
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Then, the general solutions of the Riccati equation (21) for the above factorization energies
can be found to be

β+
ζ (α, x) = D+ tanhαx − d

dx
ln

(
1− ζ

∫ x

(coshαy)2D
+/α dy

)
(26)

β−ξ (α, x) = D− tanhαx − d

dx
ln

(
1− ξ

∫ x

(coshαy)2D
−/α dy

)
(27)

whereζ , ξ are two new independent integration constants; when they are taken to be zero, we
recover the particular solutionsβ±0 (x). It must be clear that, in fact, we have obtained two
different families of intertwining operators

A+
ζ =

d

dx
+ β+

ζ (x) A−ξ =
d

dx
+ β−ξ (x) (28)

generating two different families of SUSY partners (20) of the potential (1). Until now, it
has been usual to consider only the SUSY partners of a given potential constructed by taking
particular solutions of the Riccati equation [8,9]. For the potential we are dealing with, the cases
ζ = 0 orξ = 0 give interesting results, and can be obtained simply as byproducts of (26), (27).
In principle, it is possible to find solutions associated to other factorization energies, but they
produce very awkward expressions, without adding new relevant information to the problem
under consideration.

Let us now analyse the results emerging when the general solutions (26), (27) are taken
into account. Observe that the integrals appearing there can be expressed in a closed form as∫ x

(coshαy)q dy = −2−qe−αqx

αq
2F1

(
−q

2
,−q; 1− q

2
;−e2αx

)
+ constant. (29)

This expression will be used next to construct the closed form of the SUSY partner potentials.

3.1. The two-parametric family of potentials̃V +
ζ (α, x)

In this case, taking into account (22) and (26), we see that the exponent in (29) is negative,
indeedq = −2λ. The definite integral exists in the whole real axis, and we can define the
function

M(λ, α, x) =
∫ x

0
(coshαy)−2λ dy = 22λe2αλx

2αλ
2F1(λ, 2λ; 1 +λ;−e2αx)−

√
π0(λ)

2α0(λ + 1
2)
.

(30)

A typical plot ofM(λ, α, x) is shown in figure 1 for general values of the parametersα and
λ. It is quite clear that this function is odd in the variablex, and is monotonically increasing
from its minimum valueM(λ, α,−∞) = −√π 0(λ)/(2α0(λ + 1

2)) to its maximum value
M(λ, α,+∞) = |M(λ, α,−∞)|. It is interesting to remark on the resemblance between
the form of this function and that of the error function erf(x) = 2√

π

∫ x
0 e−y

2
dy. We will

immediately see that, indeed, for the Pöschl–Teller problem,M(λ, α, x)plays a role completely
analogous to that played by the error function when determining the one-parametric family of
SUSY partners of the harmonic oscillator potential [15].

If we introduce now the function

�+
ζ (λ, α, x) := (coshαx)−2λ

1− ζM(λ, α, x) = −
1

ζ

d

dx
ln [1− ζM(λ, α, x)] (31)

we have forβ+ in (26) the following expression:

β+
ζ (α, x) = −αλ tanhαx + ζ�+

ζ (λ, α, x) =
d

dx
ln[(coshαx)λ �+

ζ (λ, α, x)]. (32)
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Figure 1. The functionM(λ, α, x) given in equation (30). Its bounded character enables the
existence of nonsingular SUSY partnersṼ +

ζ (α, x).

From here, and using (20), we can evaluate the associated SUSY partner potential, which turns
out to be

Ṽ +
ζ (α, x) = −α2

(
1 +

g

2α
+

√
1 +

2g

α

)
1

cosh2 αx

−4λαζ�+
ζ (λ, α, x) tanhαx + 2(ζ�+

ζ (λ, α, x))
2. (33)

It is obvious that the singularities of̃V +
ζ correspond to the singular points of the function

�+
ζ (λ, α, x). It can be proved that this function is free of singularities in the following range

of values ofζ :

|ζ | < 1

M(λ, α,+∞) =
2α0(λ + 1

2)√
π 0(λ)

. (34)

As we pointed out before, if we compare our results with Mielnik’s pioneering work on the
harmonic oscillator [15], one can appreciate that the roles played there by the error function
and his parameterγ , are performed here byM(λ, α, x) and the inverse ofζ . The characteristic
features ofM(λ, α, x) determine the existence of SUSY partner potentials which are free of
singularities, and are therefore almost isospectral to the modified Pöschl–Teller potential. (A
similar analysis can be done for an equivalent integral appearing in [16].)

Let us now work in this range of values of the parameterζ . The potential (33) corresponds
to the following family of almost isospectral Hamiltonians:

H̃ +
ζ := − d2

dx2
+ Ṽ +

ζ (α, x) = A+
ζ (A

+
ζ )

† + ε+. (35)

It is well known that the eigenfunctions of̃H +
ζ can be constructed by acting with the operator

A+
ζ of (28) on the eigenfunctionsψn of H , which is factorized as

H = − d2

dx2
+ V (α, x) = (A+

ζ )
†A+

ζ + ε+ (36)

and are given bỹψ+
n (ζ, x) ∝ A+

ζψn(x), provided thatA+
ζψn(x) 6= 0 andψ̃+

n (ζ, x) ∈ L2(R).
There is also the possibility of an extra eigenfunctionϕ̃+(ζ, x) satisfying

(A+
ζ )

†ϕ̃+(ζ, x) = 0 (37)
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Figure 2. The SUSY partner potential̃V +
ζ (α, x) given by equation (33), withα = 0.1, λ = 3,

andζ = 0.0937, is an asymmetric double well. Its three bound states are represented with dotted
horizontal lines.

which we call the ‘missing state’.
The first point we want to stress is that, according to (25),ε+ = E−1 which is an energy

level not allowed in the spectrum of the initial HamiltonianH . Hence, from (36) it is clear
that there is no eigenfunction̂ψ of H annihilated byA+

ζ . Therefore, the eigenfunctions of̃H +
ζ

are given by the normalized functions

ψ̃+
n (ζ, x) = (En − ε+)−1/2A+

ζψn(x) n = 0, 1, . . . (38)

plus the missing state solving (37) which, properly normalized, reads

ϕ̃+(ζ, x) =
√

1− ζ 2M2(λ, α,+∞)
2M(λ, α,+∞) (coshαx)λ�+

ζ (λ, α, x). (39)

Note that the non-singularity condition (34) appears here again, although in this case it is
required for the missing state to be normalizable. Note, also, from (35) thatϕ̃+(ζ, x) is clearly
the eigenfunction of̃H +

ζ with eigenvalueε+. This is why we named it the missing state. The

spectrum ofH̃ +
ζ is given by the set{En; n = 0, 1, . . .} plus a new level atε+ = E−1. The

conclusion is immediate: the family of potentials̃V +
ζ (α, x) is not strictly isospectral to its

SUSY partnerV (α, x): it has the same levels plus an additional one which is placed below all
of them. Let us remark that, due to the annihilation of the missing stateϕ̃+(ζ, x) in (39) by the
intertwinerA+

ζ , the missing state has no SUSY partner, and the couple of almost isospectral
HamiltoniansH andH +

ζ corresponds to a case of unbroken SUSY.
In figure 2 we have plotted the asymmetric double well corresponding to the SUSY partner

potentialṼ +
ζ (α, x) given by (33), withα = 0.1, λ = 3, andζ = 0.0937. The three bound

states of this potential are represented with dotted horizontal lines. Note that the potentials
Ṽ +
ζ (α, x) present features that make them interesting for physical applications: (i) we are able

to know their spectra in an exact form, and by adjusting the parameters we can have the desired
number of bound states, and (ii) the shape of the potential can be modified to allow interesting
tunnelling effects.
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Let us now consider the limitα → ∞ of the potentials (33). There are two terms
containing the function�+

ζ (λ, α, x); using (15), (16), and (34), it can be easily proved that this
has the following behaviour for large values ofα:

�+
ζ (λ, α, x)α̃→∞

{
4e−2α|x| x 6= 0

1 x = 0
(40)

giving a discontinuous function in the limit, but which is zero almost everywhere. In addition,
the productα�+

ζ (λ, α, x)→ 4δ(x), andα�+
ζ (λ, α, x) tanhαx → 0. Hence, the only relevant

part in this potential would be that coming from the first term. But it diverges very badly as
−4αδ(x), and therefore we do not end up with a physically interesting potential.

3.2. The two-parametric family of potentials̃V −ξ (α, x)

The study of the other family of potentials, derived from (27), can be done according to the
lines already followed in section 3.1. Nevertheless, there are important differences between
the results obtained in both cases. First of all, from equations (22) and (27), the exponent
in (29) is now positive:q = 2(λ− 1). As a consequence, if we try to evaluate the integral in
the whole real axis we get a divergent result. Nevertheless, it is useful to introduce a function
similar toM(λ, α, x): let us call it

L(λ, α, x) =
∫ x

0
(coshαy)2(λ−1) dy

= − e−2α(λ−1)x

22(λ−1)2α(λ− 1)
2F1(1− λ, 2− 2λ; 2− λ;−e2αx) +

√
π0(2− λ)

2α(λ− 1)0( 3
2 − λ)

.

(41)

This function is also odd and takes arbitrary positive values forx > 0 and arbitrary negative
values forx < 0. Using the asymptotic behaviour of the hypergeometric functions (16), it is
very easy to prove that the limitα→∞ of (41) is

lim
α→∞L(λ, α, x) =

(
eg|x| − 1

g

)
sgnx (42)

where sgnx denotes the function sign ofx, and we have used the fact thatα, λ andg are related
through equation (2). We will useL(λ, α, x) to define the function

�−ξ (λ, α, x) := (coshαx)2(λ−1)

1− ξL(λ, α, x) = −
1

ξ

d

dx
ln[1− ξL(λ, α, x)] (43)

from which the following expression forβ−ξ in (27) is obtained:

β−ξ (α, x) = α(λ− 1) tanhαx + ξ�−ξ (λ, α, x) =
d

dx
ln[(coshαx)1−λ�−ξ (λ, α, x)]. (44)

Using this expression and (20) we compute the new SUSY partner potential

Ṽ −ξ (α, x) = −α2

(
1 +

g

2α
−
√

1 +
2g

α

)
1

cosh2 αx

+4α(λ− 1)ξ�−ξ (λ, α, x) tanhαx + 2(ξ�−ξ (λ, α, x))
2. (45)

Due to the behaviour ofL(λ, α, x), it is quite clear that for any choice ofξ 6= 0 the function
�−ξ (λ, α, x) presents a singular point, and therefore the potentialṼ −ξ (α, x) is always singular,

in contradistinction to the case of̃V +
ζ (α, x) considered before. The presence of the singularity
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suggests that the results could be interpreted according to the method developed in [23]: the
SUSY partner potentials are not directly related by isospectrality to the original potential
V (α, x), but to a different problem consisting of this modified Pöschl–Teller potential plus an
infinite barrier potential placed precisely at the position whereṼ −ξ (α, x) has its singular point.

The caseξ = 0 gives the particular solutioñV −0 (α, x), which is free of singularities (see
Cooperet al in [8]). The SUSY partner potentials (45) correspond to a factorization energy
ε− = E0. Therefore, there is an eigenstatêψ of H annihilated by the intertwining operator
A−0 ψ̂(x) = 0, which is precisely (8), the ground stateψ0(x) of H . The eigenfunctions of̃H−0
are then given by

ψ̃−n (x) = (En − ε−)−1/2A−0ψn(x) n = 1, 2, . . . . (46)

In the present case the possible missing state is not square integrable, and therefore has no
physical meaning as an eigenfunction ofH̃−0 with eigenvalueε−. The spectrum of̃H−0 is given
simply by {En; n = 1, 2, . . .}. Remark that, as in the previous case, this new Hamiltonian is
not strictly isospectral toH either, although the reason is just the opposite: now the SUSY
process eliminates one eigenstate ofH , while in the previous situation a new state was created,
but keeping the initial spectrum. Hence, we have another example of unbroken SUSY encoded
in the spectrum of the coupleH andH̃−0 .

It is interesting to evaluate the limit of the previous results forα→∞, in order to do that,
we first analyse the asymptotic behaviour of the factorization energy (24):

ε− = E0 ∼ −
(g

2

)2
+
g3

4α
+ O

(
1

α

)2

. (47)

For 0< α < g/4 the SUSY potential̃V −0 (α, x) in (45) is always attractive; on the other hand,
whenα > g/4 the potential becomes always repulsive; finally, whenα = g/4 the potential
vanishes identically. This change of the attractive or repulsive character ofṼ −0 (α, x) according
to the values ofα has astrongphysical meaning. It is related to the fact that in the SUSY
process, the ground state levelE0 is eliminated from the spectrum of̃H−0 , always being a
member of the spectrum ofH , irrespective of the value ofα. In particular, whenα > g/4 the
potentialV (α, x) has only this bound state (see the comment after equation (6)), and, therefore,
in the same interval the new potentialṼ −0 (α, x) has no bound state at all. This behaviour is
illustrated in figure 3, where we plotted three members of the original family (1) of modified
Pöschl–Teller potentialsV (α, x) (the three thick curves), and also, using thin curves, their
corresponding SUSY partner potentialsṼ −0 (α, x) given by (45). The values of the parameters
are indicated in the caption.

An important detail to be stressed is that in the limitα→∞ the potential̃V −0 (α, x) of (45)
has a well defined behaviour (unlike the situation forṼ +

0 (α, x)): it becomes the delta barrier

lim
α→∞ Ṽ

−
0 (α, x) = +gδ(x) g > 0. (48)

The difference between (48) and the limit in equation (11) is quite remarkable.
Another interesting point to be considered is the analysis of the limitα → ∞ of (45),

which can be evaluated even for the caseξ 6= 0. We already have all the information needed
to write down this result, indeed:α(λ − 1) → g/2, tanhαx → sgnx, plus equations (48),
(42) and (43). We get the following:

lim
α→∞β

−
ξ (α, x) =

g

2
sgnx + ξ

eg|x|

1− ξ
(

eg|x|−1
g

)
sgnx

(49)

lim
α→∞ Ṽ

−
ξ (α, x) = gδ(x) +

2gξeg|x| sgnx

1− ξ
(

eg|x|−1
g

)
sgnx

+
2ξ2e2g|x|[

1− ξ
(

eg|x|−1
g

)
sgnx

]2 . (50)
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Figure 3. Different P̈oschl–Teller potentialsV (α, x) from equation (1) (the three thicker curves),
and their corresponding SUSY partner potentialsṼ −0 (α, x) given by equation (45) (the three thinner
curves). The values of the parameters are the following: dotted curvesα = 1, λ = 2.562, dashed
curvesα = 3,λ = 1.758, and solid curvesα = 6,λ = 1.457. In all cases the parameterξ is taken
to be zero. The initial P̈oschl–Teller potentials are always negative; their SUSY partners are less
negative (dotted curve) or even become positive (dashed and solid curves).

Again, we have used the fact that the parametersα, λ andg are related through (2). Observe
that after the limit process, we obtain a function with three different discontinuities:

(1) The function blows up like 2(x − xs)−2 at the singular point

xs = sgnξ

g
ln

(
1 +

g

|ξ |
)
.

(2) At the origin, we get a divergence of the type +gδ(x).
(3) There is a finite jump discontinuity at the origin, due to the presence of the sign function

in (50).

These remarks are clearly illustrated in figure 4, where we have plotted the limit case (without
the delta distribution at the origin), plus one intermediate case. The dotted curve represents the
plot of one of the SUSY partners of the modified Pöschl–Teller potential (45), for the following
values of the parameters:α = 1.9, λ = 1.216 (or equivalentlyg = 1), ξ = −0.05. The solid
curve represents the SUSY Dirac delta potential forg = 1 andξ = −0.05, and is a limiting
case of the dotted curve whenα → ∞ (the delta contribution comes out from the limiting
behaviour of the dotted hump).

3.3. The connection with the SUSY Dirac delta potential

Let us consider now the intertwining relationship (19) for the Hamiltonian associated with the
Dirac delta well potentialVD(x) = −gδ(x). Equations (20) and (21) also hold, withVD(x)
as the known potential and the potentialṼ to be determined. The relevant Riccati equation to
be solved is now

β2 − β ′ = −gδ(x)− σ (51)

whereσ is the factorization energy in this case. Note that from the mathematical point of view
it is a differential equation which includes a distribution. Therefore the solution could have
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Figure 4. The dotted curve shows the plot of a member of the family of SUSY partner Pöschl–Teller
potentialsṼ −ξ (α, x) given in equation (45), for the following values of the parameters:α = 1.9,
λ = 1.216 (or equivalentlyg = 1), andξ = −0.05. The solid curve represents the SUSY partner
Dirac delta potential forg = 1 andξ = −0.05, and is obtained from the dotted curve when the
limit α → ∞ is considered. For this curve there are two remarkable details: first, the divergent
termgδ(x) has not been represented and, second, the potential has a discontinuity atx = 0.

some discontinuity. It is possible to find a particular solution of (51), for a particular value of
the constantσ , in terms of the sign function, indeedβ0(x) = (g/2) sgnx for σ = −(g/2)2.
This function satisfies the differential equation almost everywhere, i.e., for every real value of
x, except forx = 0. Then, the general solution can be found by using the standard technique
of transforming the nonlinear Riccati differential equation into a linear one. The final result is
the following:

βω(x) = g

2
sgnx − d

dx
ln

(
1− ω

∫ x

0
eg|y| dy

)
= g

2
sgnx +

ωeg|x|

1− ω
(

eg|x|−1
g

)
sgnx

. (52)

But this is precisely the result previously obtained in (49) if we identify the two parameters
ω = ξ . Obviously, the potential coming out from this function will be exactly the same
as (50). Therefore, we have also been able to obtain the general SUSY partners of the Dirac
delta distribution as a byproduct of the general results derived for the modified Pöschl–Teller
potential in the previous section. A different approach to the general solution(ω = ξ 6= 0)
has been given in [26]. We would like to insist on the fact that in the singular potential case
(ξ 6= 0) the SUSY problem is related to a modification of the initial potential resulting from
adding an infinite barrier placed at the singularity (see [23]).

Let us now comment a little further on the results for the Dirac delta SUSY partners. The
particular case obtained from (50) by makingξ = 0

lim
α→∞ Ṽ

−
0 (α, x) = +gδ(x) = V SUSY

D (x) (53)

is in complete agreement with some already well known results [9]. Finally, we would like
to stress one of the main results: the SUSY partners and all the relevant information for the
Dirac delta potential can be obtained by taking the limit in the corresponding expressions for
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the P̈oschl–Teller case, due to the good behaviour of the limiting procedures. One remarkable
difference is that for the delta potential there is just one SUSY partner (indeed, only one specific
value of the factorization energyσ allows us to obtain the solution of the Riccati equation (51)),
in contrast to the analysis done for the modified Pöschl–Teller potentials, where two different
factorization energiesε± were found.

4. The 2-SUSY modified P̈oschl–Teller potential

The higher-order SUSY partners can also be determined for the potentials we considered before.
A handy technique, which uses difference equations in order to construct multi-parametric
families of isospectral potentials, has been recently developed in [20, 21]. In this section we
shall comment briefly only on the results derived following this approach for the potentials we
are dealing with in the 2-SUSY case. In the first SUSY step we use the factorization constant
ε+ and in the second step we useε− (the same final second-order SUSY results are obtained
if the process is performed in reverse order). Hence, the 2-SUSY potential is given by

V
+,−
ζ,ξ (α, x) := V (α, x)− 2

d

dx

(
ε+ − ε−

β+
ζ (α, x)− β−ξ (α, x)

)
(54)

whereV (α, x) is the initial modified P̈oschl–Teller potential (1),ε± are given by (24), and
β+
ζ (x), β

−
ξ (x) by (32) and (44), respectively. The 2-SUSY partner depends on the two

parametersζ and ξ . This family embraces a wide variety of potentials; one of the most
interesting cases is obtained by taking only the particular solutionsζ = ξ = 0:

V0,0(α, x) = − gα

2 cosh2 αx
+

2α2

sinh2 αx
= −α2λ(λ− 1)

cosh2 αx
+

2α2

sinh2 αx
. (55)

This kind of solution is a particular case of a more general form of the modified Pöschl–
Teller potential [2,5]

V (x) = α2

(
κ(κ + 1)

sinh2 αx
− λ(λ− 1)

cosh2 αx

)
(56)

precisely for the valueκ = 1. Note that (55) does not have a well defined limit whenα→∞,
and therefore it is not possible to find a 2-SUSY partner for the Dirac delta connected with a
2-SUSY partner of the modified Pöschl–Teller potential. Observe that this fact was implicit
from the beginning, because only one factorization energyσ was found for theδ, while for the
modified P̈oschl–Teller we were able to find two different factorization energiesε+, ε−.

5. Final remarks

Due to the relevance of solvable SUSY quantum mechanical models as toy examples for higher-
dimensional quantum field theories, and also because of their use in solid state physics, we
analysed in detail the supersymmetry associated with the modified Pöschl–Teller potential,
which appears in many interesting physical situations, for example in the nonrelativistic
limit of the sine–Gordon equation, in connection with a two-body force of Dirac delta type,
when studying integrable many-body systems in one dimension, or when considering two-
dimensional SUSY quantum field theories.

In this paper we have constructed two new one-parametric families of exactly solvable
potentialsṼ +

ζ (α, x) andṼ −ξ (α, x) related to the modified P̈oschl–Teller potentialV (α, x) by
the one-parametric superpotentialsβ+

ζ (α, x) andβ−ξ (α, x), respectively. They represent two
different cases of unbroken supersymmetry, and they reduce to some previously published
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results forζ = 0 or ξ = 0. A relevant trait of our results is that, for specific values ofζ

andα, the members of the familỹV +
ζ (α, x) are free of singularities, which is, as far as we

know, a fact unnoticed in the literature. On the other hand, the familyṼ −ξ (α, x), with ξ 6= 0,
embraces only singular potentials which have to be considered very carefully, because they are
not SUSY partners of the initial potential (1), but of the initial potential plus an infinite barrier
at the singularity [23].

The connection between the modified Pöschl–Teller and Dirac delta potentials was
established, and we were able to construct the SUSY partner of the delta potential. The main
remark is that only the singular familỹV −ξ (α, x) can be used to approximate an attractive delta
potential in terms of the limiting procedure discussed in the paper. The explanation can be given
in terms of the SUSY process: our particular solution of the Riccati equation (51) represents
the superpotentialβ0(x) = (g/2) sgnx usually derived for the attractive delta potential [9].
Therefore, the SUSY partner potential of the Dirac delta well is a Dirac delta barrier and,
because this last potential has no bound states, the corresponding SUSY system has to present
unbroken SUSY; in other words, the SUSY process eliminates the only bound state of the delta
well in order to satisfy the Witten index condition for unbroken SUSY. The same holds for the
caseω = ξ 6= 0. The energy level atε− = E0 is destroyed and it does not play any role in the
limit α →∞ for the spectrum of̃V −ξ (α, x) (remember that limα→∞ E0 = Eδ). As the other

energy levels disappear, from the spectrum ofṼ −ξ (α, x) when taking this limit, then the final
potential has no bound states. The result is in complete agreement with the direct calculation.
For Ṽ +

ζ (α, x), the situation is different because the ground energy levelε+ diverges as−α2

whenα→∞, and the potential has no physically interesting limit.
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[2] Pöschl G and Teller E 1933Z. Phys.83143

Lotmar W 1935Z. Phys.93528
[3] Alhassid Y, G̈ursey F and Iachello F 1983Phys. Rev. Lett.50873
[4] Nieto M M 1978Phys. Rev.A 171273
[5] Barut A O, Inomata A and Wilson R 1987J. Phys. A: Math. Gen.204083
[6] Infeld L and Hull T E 1951Rev. Mod. Phys.2321
[7] Matveev V B and Salle M A 1991Darboux Transformations and Solitons(Berlin: Springer)
[8] Witten E 1981Nucl. Phys.B 188513

Cooper F, Khare A and Sukhatme U 1995Phys. Rep.251267
[9] Sukumar C V 1985J. Phys. A: Math. Gen.182917

Boya L J 1988Eur. J. Phys.9 139
[10] Braden H W and Macfarlane A J 1985J. Phys. A: Math. Gen.183151

Dunne G and Feinberg J 1998Phys. Rev.D 571271
[11] Mitra I, Dasgupta A and Dutta-Roy B 1998Am. J. Phys.661101
[12] Atkinson D A and Crater H W 1975Am. J. Phys.431301
[13] Olshanetsky M A and Perelomov A M 1983Phys. Rep94313
[14] Darboux G 1882C. R. Acad. Sci., Paris941456
[15] Mielnik B 1984J. Math. Phys.253387



8460 J I Dı́az et al
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